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Symmetries and differential equations 

Jehuda (Roberto) Meinhardt 
Department of Mathematics, Tel-Aviv University, Israel 

Received 12 March 1980 

Abstract. The knowledge of the maximal Lie group or abstract monoid of symmetries of an 
ordinary non-singular differential equation (or system of equations) allows us to obtain 
solutions of them. Traditional similarity analysis of point transformations is extended to 
non-point transformations (inclusion of derivatives), giving analytic expressions for solu- 
tions, where previously only numerical methods were used. Examples are given, and the 
didactic aspect is emphasised. 

1. Introduction 

It has been known since Lie (1888-1927) that the theory of continuous transformation 
groups gives promise of providing a canonical method to deal with complicated systems 
of ordinary or partial differential equations. The method, known also as similarity 
analysis, is by no means new; in fact, the fundamental ideas date back to the end of the 
last century and are the product of one man: the Swedish mathematician Sophus Lie. 

Later development and application of similarity analysis can be found in the works 
of Cohen (1931), Birkhoff (1950), Michal(1952), Morgan (1952), Ovsjannikov (1962), 
Na and Hansen (1971) and Bluman and Cole (1974). The inclusion of contact 
transformations as symmetries of a differential equation with the aim of constructing 
new solutions from known ones, or reducing the number of variables of a partial 
differential equation (reduction of order in an ordinary differential equation), did not 
bring about an essential generalisation of traditional similarity analysis of point 
transformations, and only recent work by Anderson et a1 (1972; Anderson and Davison 
1974) and Gonzalez-Gascon (1977) produced new hopes for this elegant mathematical 
theory. Our aim in this article is, besides presenting traditional similarity analysis in a 
didactical form, a generalisation to non-point transformations and a presentation of a 
method for obtaining non-point symmetries of differential equations. We deal only 
with non-singular ordinary differential equations (or systems of ordinary differential 
equations) as the extension to singular ordinary differential equations or systems is 
straightforward. The problem of initial or boundary values and of partial differential 
equations will be treated in subsequent papers. 

Illustrative examples showing the powers of this method are given. 
Finally, we would consider our task accomplished if we could convince the scientific 

community that, before going to the computer to solve a differential equation by 
numerical methods, one should try via generalised similarity analysis to obtain an 
analytic expression for the solution or to construct new solutions from known ones, or at 
least to reduce the number of variables or the order of the differential equation. 

0305-4470/81/081893 +22$01.50 @ 1981 The Institute of Physics 1893 



1894 J (R) Meinhardt 

2. First-order non-singular ordinary differential eqnation 

Let us consider the general expression for the first-order non-singular ordinary 
differential equation: 

dyldx - f ( x ,  Y) 0 (2.1) 

and let us seek the symmetries of this equation; i.e. the set of transformations of the 
dependent and independent variables under which equation (2.1) is ‘conformally 
invariant’. 

Set 

P = Y ( x ,  Y), IC = X(x, ) I ) ,  (2.2) 

djjld.7 -f(i, 9) = G(x, y)[dy/dx -f(x, y ) ]  = 0 (2.3) 

where G(x, y), the conformal factor, is different from zero in a region of the phase space 

An equivalent definition of symmetry of a differential equation is any trans- 
formation that, when applied to a solution of a differential equation, gives us a new 
solution of the differential equation. This important property of the symmetry of a 
differential equation tells us that the knowledge of such symmetries will help us to 
obtain new solutions from known ones. 

discrete symmetries : 

and the new differential equation will be ‘conformally invariant’ to (2.1), if 

(x, Y ) .  

There are many types of symmetries. For example: 

- 
dY y + y = -  Y9 - = y is symmetric under 
dx x + z = x ;  

periodic symmetries : 

dY - = F(x)y (where F ( x )  = F(x + T ) )  is symmetric under 
x + i = x + T, 

dx y + Y = y ;  

continuous symmetries : 

dY - = y is symmetric under 
dx x + f = x ;  

y + P = ay, 

and we can think also of more complicated situations, where (2.2) describes a functional 
or quasidifferential operator acting on the dependent and independent variables. 

If we know all the symmetries of a differential equation, we will say that we have the 
maximal set of symmetries, and we conjecture that most of the differential equations 
dealt with science and which represent natural phenomena have symmetries. This is a 
fundamental hypothesis of our workt. Whereas it is clear that a differential equation 
defines a maximal set of symmetries, we next conjecture that a maximal set of 
symmetries uniquely determines a differential equation. However, in the present 
article we will confine our investigation to very special types of symmetries, and only in 

f Perhaps it might be possible to construct some very special differential equation, wherz it can be shown that 
it has no symmetry (besides that of the identity transformation), but the author doubts if this equation would 
have any scientific use or application apart from pure academic interest. Certainly nothing is known in this 
direction; the prohlem, as we will see, is to find the symmetries, which sometimes can be a very hard job. 
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subsequent articles will we search for the maximum set of symmetries. This conjecture 
could be helpful in elementary particle physics, where we have some groups and 
discrete symmetries that allow us to classify elementary particles. But we know very 
little about the dynamics of these particles, including whether or not it can be described 
by a differential or integrodifferential equation. 

We now return to our purpose of finding symmetries of ordinary differential 
equations, and we define a point-transformation symmetry t 

x -,i = f (x ,  y), Y + 1 = 1(x, Y 1, (2.4) 

where equation (2.3) holds. 
A symmetry will be callled local differential (non-point transformation) if the 

prescription used to transform a solution of a differential equation into another solution 
is of the form 

y + Y = y  x , y , - , y  dY d2Y ,...) (2 .5 )  ( dx dx 

(a finite or infinite number of derivatives can be included). We again take the example 

dy/dx - y = 0 (2.6) 

and try to find the point transformation symmetries (2.4) of this equationS. In other 
words, we want to find a point transformation (2.4) such that, when it is applied to our 
equation, we obtain a new equation differing from the former by just a conformal 
factor: 

So, if (2.6) is satisfied for a known solution, (2.4) applied to it gives us a new solution of 
(2.6). 

dy/dR - 1 = G(x, y)(dy/dx - y )  = 0. (2.7) 

Now we can write the left-hand side of (2.7) as 

and to cast it in the form (2.7) we can assume 

(i) 1 = 1(Y), (ii) i = S(x). 

This implies 

and assume 

t The name comes from the fact that the transformation relates two different points of phase space (x, y )  and 
6, 8) .  
t For first-order ordinary differential equations it makes no sense to consider local differential symmetries, 
because the differential equation can be introduced in the right-hand side of (2 .5 ) ,  resulting in a point 
transformation symmetry. 
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From (iii) we conclude that dxldx must be equal to a constant, 

d.f/dx = a 3.f = ax + b, 

and we have to solve the following equation to obtain the conformal factor: 

y dG/dy+( l - a )G(y)=O.  

The general solution is given by 

G(y)  = cya-’. 

We now know that the point transformation 

x +.f = ax + b, y + 9 = cya, a, b, c are real constants, 

is a symmetry of equation (2.6); i.e. equation (2.7) holds. 
We can immediately raise questions about this method of finding the symmetries of 

equation (2.6). First, it could be that our three assumptions are too restrictive and that 
there are more symmetries that we did not obtain. Second, for more complicated 
equations of first or higher order, we will not be able to make such straightforward 
assumptions as we did. Finally, the equations for the conformal factor G could be more 
difficult than the original equation. At this point the fundamental ideas of Lie 
(1888-1927) will come to our help to settle the problem. 

Let us suppose that the point transformation (2.4) is a one-parameter trans- 
formation: 

x = 2 ( x ,  y ; CY), 7 = P(x, y; a ) ,  (2.9) 

and we assume the analytic dependence of (2.9) on (Y in the neighbourhood of the 
identity transformation, defined as 

f (x ,  y ;  (Yo) := x, B(x, y ; (Yo) := y. (2.10) 

Setting (Y := cyo + E and expanding in powers of E ,  we obtain 

+“I + . . . ,  
a = a o  2! aa a = e o  

Let us define 

(2.1 ?) 

so that 
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etc, so we can write the Taylor expansion as 

f=x+EL(X, y)+- l-+.- +.  - 9 ,  

E 2 (  2! ax at :j 
if( a y  

a. j j  = y + &.(X, y )  +- t-+ .-) + . . * * 

(2.12) 

This power series will in general converge in some neighbourhood of E = 0 and 
represent the global transformation (2.9). 

Let us consider E so small that higher orders of E can be neglected?; we return to 
equation (2.1) with the intention of casting it into the form (2.3) after using (2.12). From 
(2.3) 

With this 

The last expression can be cast into the desired form, if we assume that the conformal 
factor G(x, y )  can be Taylor expanded around the value aO of the parameter, and define 

G(x, y ; (YO) := 1, 

so that, to first orders in E ,  

G(x, y ; a ) =  l+EaG/acuI,=,, 

and by identification 

We can now state the following theorem. 

Theorem (Bluman and Cole 1974). 2 = x + E ~ ( x ,  y )  and j j  = y + E ~ ( x ,  y )  define 
uniquely (by (2.12)) a symmetry transformation for equation (2.1), if and only if 

(2.14) 

Some conclusions from our previous calculations can be stated. 
(a) If the infinitesimal transformation is given: 

x + 2  = x  +El(X, y), Y + B  = y  +E.(X, Y), (2.15) 

t Lie (1888-1927) showed that there is no loss of generality under this assumption, and he called 
.f = x + E [ ( x ,  y),  p = y + e q ( x ,  y ) ,  the infinitesimal transformation, 
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then the infinitesimal transformation for the first derivative, also called the first 
extension, is 

(2.16) 

(b) From (2.15) there are two methods of constructing and defining uniquely the 
finite transformation; one, as already stated in the theorem, is from (2.12), and the other 
is through the definition (2.11); i.e. we must solve what is called in the literature the 
characteristic equation : 

dx/f(x, y)=dy/v(x,  y ) = d a .  (2.17) 

Example. 

x +ff  = x +EX, y + p = = y + &  siny. 

Then dxlx I= d a  and dy/sin y = da,  implying 

lnx  = c y  +Q, In tan y = c y  +P, 

where Q and P are integration functions such that when the parameter cy is zero we 
obtain the identity transformation; i.e. 

In x = a +In 2, In tan y = a  +In tan p, 
so that the finite transformation is 

x + f = e - a x ,  y + j j  =tan-' (e-" tan y ) .  

Note that if the characteristic equation (2.17) cannot be solved for known functions ( 
and 77, then we can always return to (2.12) and content ourselves with the fact that, if we 
know a solution of our differential equation, then the newt one will be expresse'd in 
terms of a power series expansion. 

Example. The Bernoulli equation 

dy l i x s i n x  _- - y -(sin x)y 
dx x3 

has a particular solution y =x. It can also be shown by (2.14) that it is conformally 
invariant under the infinitesimal transformation 

x + B = x ,  y + j j  = y + .cy e-2c0s*, 

and the characteristic equations are 

dx/Q = dy/y3 e-2c0sx = du. 

Integrating, we obtain the following finite transformations: 
2 -2cosx 1/2 

x + . f = x ,  y + j j = y / ( l - 2 a y  e 1 
and the new family of solutions is 

2 -2cosx 1 / 2  yNew=x/(1-2ux e ) . 

t It ia possible that we will obtain the same solution again 
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(c) From equation (2.14) we conclude that there is an infinite class of infinitesimal 
transformations which leave first-order ordinary differential equations conformally 
invariant, because we have two unknowns 5, 77 for one partial first-order differential 
equation. This answers some questions. First, for the equation dyldx - y = 0 we will 
have more symmetries than those obtained by the method of assumptions. Second, 
there is no general solution for equation (2.14), and we must develop ad hoc methods to 
solve it, as we will see later on. 

(d) Eisenhart (1966) has proven that the infinitesimal transformations that leave a 
first-order ordinary differential equation conformally invariant describe a group. This 
fact is true also €or differential equations of higher order (see Gonzalez-Gascon 1977), 
as long as we deal with point transformations; but considering local differential 
symmetries, we cannot guarantee the existence of an inverse transformation; so in 
general we will have only a monoid structure if we also include local differential 
symmetries for our equations. 

(e) Once equation (2.14) has been solved for a first-order ordinary differential 
equation, then the integrating factor for this equation can be obtained directly from the 
knowledge of 5 and 77 (see Cohen 1931, Bluman and Cole 1974): 

I = 1 l ( v  -fO (2.18) 

If we know two different integrating factors Il #I2. ,  i.e. two pairs of solutions (51 ,  771) 

and (12, T ~ )  of equation (2.14), then the general solution of our first-order ordinary 
differential equation can be obtained from Cohen (1931): 

11/12 = constant. 

3. Solving the fundamental equation for the infinitesimals 

Equation (2.14) 

is the heart of the problem for first-order ordinary differential equations, because once 
77 and 5 are known, we know the integrating factor or can construct new solutions from 
known ones. But we must be careful; 

I = I(x, Y 1, 77 =f5(x, Y ) ,  (3.1) 

is a solution of (2.14) and the integrating factor is not defined. Apart from the solution 
(3.1) and the trivial one, any other pair is suitable for our purposes. 

As we have already stated, we cannot find the general solutions of (2.14) because the 
problem is overdetermined, but we can state that if (771, l1)  and ( 7 2 ,  52) are solutions of 
(2.14), then (v l  + 772, il + 12) is also a solution. That is a consequence of the linearity of 
this first-order partial differential equation. From that, we can conclude also that the 
first-order ordinary differential equation will have an infinite parametric group of 
symmetries, because it has an infinite number of monoparametric symmetries and 
because of the linearity property of the equation. Second, we can try. to invert the 
problem, and, given 77 and 5, to solve the quasilinear first-order partial differential 
equation for f via the method of characteristics. 
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Example. Let q = 0 and 6 = y ; then the quasilinear first-order partial differential 
equation for f is, from (2.14), 

f’ + y a f / a x  = 0,  

f = Y / ( X  + rlr(Y)).  

and solving, we obtain the general solution 

This means that the following ordinary first-order differential equation has the expected 
symmetry: 

This fundamental idea, that, given symmetries a pr ior i ,  we can obtain the differential 
equations, can be very helpful in elementary particle physics, where an equation 
describing the dynamics of the particles is needed and only symmetries for the particles 
are known. On the other hand, it allows us to construct tables of differential equations 
conformally invariant under a certain symmetry transformation (see Cohen 193 1, 
Bluman and Cole 1974). 

Y ’ = Y l b + r l r / ( Y ) ) .  

Now returning to equation (2.14), let us assume 

(9 f=O,  qzo .  
Then we obtain the following first-order quasilinear partial differential equation: 

a d a x  + f a d a y  = T a f I a Y ,  
which can be solved by the method of characteristics (Bluman and Cole 1974): 

-- dx 
-= 1 J x = s +constant, 
ds ds 
dq/ds = q a f / d y .  

We observe here that this ansatz doesn’t help us, because one of the characteristic 
equations is the equation that we want to solvet. 

(ii) b = O ,  77 = q ( f ,  aflax, a f l a y ) .  

Introducing this in equation (2.14), a straightforward calculation gives 

q = e x p ( ~ + [  ( f x l f , )  df + f  ), f = O ,  

where f x  := a f / a x  and f ,  := a f l a y .  

(iii) b = b ( f ,  aflax, a f l a y  1 9  q =o.  
We obtain 

f = exp (B - q =o.  

Condensing both cases (ii) and (iii) into one, because of the linearity of equation 
(2.14) we obtain as a particular solution of (2.14) 

b =  exp ( B  - 5 df ). (3.2) 
T = e x p ( ~ + j  ( f y l f x ) f ’ + f  

? We get the same if we make the ansatz I f  0 and 7 = 0. 
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If f x / f y  is an arbitrary functiont off, but not equal to -f, we can in principle integrate 
(3.2) and obtain 5 and 7 explicitly. 

Example. 

Y ' = ( x + Y ) " * f ( x ,  y ) = ( x + y ) " .  
Then 

If we assume 5 =  0, the integrating factor by (2.18) is 

I = e-^/[(x + y)" + 11. 

The fact that f x / f y  = c p ( f )  and cp( f )  # -f can be used to enlarge our table of integrable 
first-order differential equations. 

Let us solve the equation 

f x  - cp ( f ) f Y  = 0 (3.3) 

by the method of characteristics; then 

f = F ( y  +cp( f )x )  (3.4) 

where F and cp are arbitrary functions, i.e. we just solve the algebraic problem of 
constructing the function f such that (3.3) is satisfied. Supposing that F has an inverse 
F-', then 

F - l ( f )  = Y + cp(f)x, (3.5) 
and by definition let us call this 

g := F-'(cp). 

Then from (3.5) we have 

g = Y +v( f )x .  

g = Y +[cp oFl(g)x  

But f = F ( g ) .  SO 

and cp 0 F := 9, so that the algebraic equation to be solved first for g, given an arbitrary 
9, is 

g = Y + * k ) x .  

Once g is known we apply another arbitrary function F to it and obtain an f. 

Example. Let be the identity function, so we have the algebraic equation 

g = y + gx 3 g = y / ( 1 - x 1. 
Now let us again take for F the identity function; we obtain f = y / ( l - x )  and the 
ordinary differential equation is 

Y'=Y/(1-x)* fx / fy  = y / ( l - x ) = f .  

t f,/f, could also be a constant. 
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So the integrating factor is 

(iv) Before we finish with this section let us mention another way to solve (2.14). If 
f(x, y )  is a simple polynomial in x and y, it is worthwhile assuming [ = 0 and 77 also a 
polynomial in x and y, so that we can determine it through (2.14), identifying 
coefficients. 

Now we will attack the problem of second-order, non-singular ordinary differential 
equations, and through this we will find yet another way of solving equation (2.14). 

4. The second-order non-singular ordinary differential equation 

d2y/dx2=f(x,  y ,  Y? .  (4.1) 

The treatment of the second- or higher-order non-singular ordinary differential equa- 
tion is essentially along the same lines as that of the first-order non-singular ordinary 
differential equation. We can consider local differential symmetries for this equation: 

where we include only the first derivative, because the second derivative is defined by 
(4.1) and can be expressed in terms of the first derivative. Calculating the first extension 
(dyldx Y ' ) ,  

-, (aY/ax) dx + ( @ / a y )  dy +(aY/ay')  dy' 
= (aZ/ax) dx + ( d 2 / a y )  dy + (aZ/ay') dy" 

we obtain, to first order ir, E ,  

y = y ' + &  -+-y '++ , f - -y f - - (y  877 877 a i  a i  , ) +f). a i  
(ax a y  a y  ax a y  a y  

(4.3) 

Now let us write equation (4.1) as a system of two first-order ordinary differential 
equations (this can always be done): 

U - y ' = O ,  v f  - f(x, y, U )  = o ;  (4.4) 

we ask for the symmetries of this systemt: 

x + a  = x + E l ( &  y, U ) ,  Y + Y  = y  + E T ( X ,  Y ,  U ) ,  U + I3 = v + &W(X,  y, U). 
(4.5) 

The expression for w was already calculated in (4.3), and it is necessary only to replace 
y f  by U :  

This takes account of the first of the pair of equations (4.4), and we need only to 

t These symmetries must be considered as local differential and not point transformations, because U = y ' .  
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calculate the first extension of v and use the second equation of the pair (4.4): 

(at./ax) dx + (aa /ay)  dy + (aa/a.~) du 
(a.f/dx) dx + ( & ? / a y )  dy + (a,f/av) dv 

5’ = 

and to first order in E 

f -- f  - - v f  --f  = 0 ’ + & X 1 ,  a’= U ’ + &  -+-U +- 
ay ’) (ax ay  a v  ax a y  a v  

aw aw aw ay ay 

Using the second of equations (4.4), we obtain 

a f  a f  a f  a ’ - f ( . f ,  y, a ) = v ’ + & X 1 - f ( X , y , v ) - & y - - E ~ - - - & w ~ -  
ax a y  a v  

So if U‘- f ( x ,  y, U )  = 0, we obtain 

a f  a f  a f  
X I  - [--- q- -w-  = 0, ax a y  av 

and we end up with two equations, (4.6) and 

(4.7) 

These two equations can be reduced to one second-order partial differential equation 
with two unknown functions [ and 7 and three independent variables (x, y, U): 

a25 d l  af 
a v a y  a v  a y  

- v 2  ( 2 - f + - -) = 0. 

Here again, because of the overdetermination, we will have an infinite parametric 
monoid of symmetries, and only in the case of point transformations will we have a 
group; i.e. if we assume that f = C(x, y), 7 = ~ ( x ,  y ) ,  

(4.10) 

The differential equation of second order with maximal point symmetry (Cohen 1931, 
Bluman and Cole 1974) is 

(4.11) d2y/dx2 = 0 .$ f (x, y, v )  = 0. 



1904 J (R) Meinhardt 

So we have to solve the following system of equations: 

2 
-_ a2q 2-=o, a25 _- a ;-os 
a y 2  axay ax 

(4.12) 

(4.13) 

an eight-parameter group, isomorphic to the projective transformations in the plane. 
The knowledge of the point transformation symmetries of a Second-order ordinary 

differential equation can be of help in finding the local differential symmetries of this 
equation. If we consider the previous example, it can easily be confirmed that 

f ( x ,  Y ,  u ) = a i ( ~ ) x y + a 2 ( u ) y  + c i ( u ) x 2 + b i ( u ) x  +b2(u) ,  
(4.14) 

is a solution of (4.9). Equation (4.14) is a local differential symmetry; we only need to 
replace U by y', and we have an infinite parametric monoid of symmetries, defined by 
eight arbitrary functions of y ' .  

Now we can return to the problem of first-order ordinary differential equations; let 
us take an example to show how we can extract more symmetries: 

rib, Y ,  0) = C l ( U ) X Y  +c2(u)x + a l ( 4 y 2 + & ( u ) y  +d2(u), 

y ' = x + y .  (4.15) 

According to (3.2) we will have the following two-parameter group: 

(4.16) 

Differentiating (4.15) again, we will get a second-order ordinary differential equation, 

y " = l + y ' ,  (4.17) 

whose point transformation symmetries (from (4.10)) form an eight-parameter group: 

f = ( E + F  e-")y +B e-x +Ex  +Fx e-' + C ex +G, 

q = Ey2 + (C ex - F e-* + 2Ex + A )  y (4.18) 

+D1e"+D2+Cxex-Be-"-Fxe-"+Ex2+Ax. 

We now go back to equation (2.14) and introduce (4.18) into it, but taking f = x + y 
of the first-order ordinary differential equation, we obtain for equation (4.15) the 
following new six-parameter group: 

f = ( E  +B e-")y +B e-' +Ex +Bx e-' + C ex + G, 

q = Ey2+ (C ex -B epx +2Ex + A ) y  (4.19) 

+ D ex + ( A  - G) + Cx ex - B  e-" -Bx eCx +Ex2 +Ax. 
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The following figure summarises this new method of obtaining point transformation 
symmetries for a first-order non-singular ordinary differential equation: 

(differentiation) Jy'=fl(x,y)l 

use (4.10) with f 

'ZGlj. ' (use (2.14) with f,) (5,7) 
The knowledge of the infinitesimal or finite transformation which is obtained via the 
characteristic equations 

= d a  (4.20) 

again allows us to construct new solutions from known ones for a differential equation 
of second order, but, what is more important, it helps us to reduce a second-order 
ordinary differential equation to a first-order ordinary differential equation. For this we 
have the following theorem, which is a fundamental for similarity analysis. 

Theorem (Cohen 1931, Bluman and Cole 1974). If d2y/dx2 = f(x, y ,  y ' )  is a differential 
equation of second order and is conformally invariant under the transformation 

dx - dy - dY 
l (x ,  y ,  Y '1 - t7 (x, y ,  Y '1 - w (x, Y ,  Y '1 

x + x = x + & l ( X ,  y ,  y'), y + 7 = Y +Et7(X, Y ,  Y ' ) ,  y'+jj '=yI+&w(X, y , y ' ) ,  

then the characteristic equations (4.20) produce two conserved quantities u(x, y ,  y')  
and z(x, y ,  y ' )  obtained by integration of (4.20). 

Suppose U is a function of z ;  then second-order ordinary differential equations can 
be reduced by appropriate substitution into a first-order differential equation?: 

du/dz = F(u ,  z ) .  

Before passing to an example, let us point out that this theorem can be extended to 
higher-order ordinary differential equations, which by successive applications can thus 
be reduced to first order. It has also been extended to partial differential equations or 
systems (Michal 1952, Morgan 1952), where we can reduce successively the number of 
variables. 

Next it is important to mention the concept of conserved quantity associated with 
the notion of symmetry as defined by us. The idea that symmetries produce conserved 
quantities comes from the work of Noether (1918), but there it is necessary to have, in 
addition to symmetries, also a Lagrangian for the equation in order to obtain conserved 
quantities. Our method is far superior, because from the equations we obtain the 
symmetries, and through the characteristic equations the conserved quantitieg or 
invariants for the symmetry transformations. Now we understand the importance of 
obtaining the symmetries of a differential equation; they are the heart of the equation. 

f The statement of the theorem is more general than that established in the literature, because we include 
local differential symmetries, but the method of proof is exactly the same. 
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Exaniple. 

y “  = 0. 

This is a very simple example, as are most that we have given. But our intention is to 
show the method at work, so that it can be applied tQ very complicated differential 
equations where all the traditional methods fail and one usually resorts to numerical 
solutions. 

Let us take a particular local differential symmetry of this equation (see (4.14)): 

r: = xy‘, 7 = o .  

CL) = - (y ’ ) ’ ,  

This implies from (4.6) that 

so the characteristic equations are 

dxlxy‘ = dy/O = dy‘/-(y’)’. 

A trivial invariant or conserved quantity is 

y - + Y = ) ’ ,  

u(x, y ,  y ’ )  := E’. 

and let us define 

So, we have to deal with the remaining characteristic equation, that must give us the 
second invariant: 

dx dy‘ dx dy’ _ =  I__ 

X Y ’  - (y ’ )2+ ;=  - 7 3  

d In x = -d In y’+ln z ( u )  

+lnxy‘= lnz (u ) ,  

z ( U )  := x y ’ t  second invariant 

I-$ y l  = z ( u ) / x .  

Introducing this in our equation, 

z ( u )  1 dz du 
x x du dx 

y l ‘  = ---z-+ - - - = 0 

but 

duldx = y ’  = z ( u ) / x  

We obtain the desired first-order ordinary differential equation 

dz(u) /du - I  = O ,  

whose general solution is 

Z ( U ) = U  -B, B is a constant. 
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But z (u )  = xy’ and U = y, so we have another first-order ordinary differential equation 
to solve: 

Y ’ = ( Y  - B ) / x  

3 d y l ( y  - E )  = dx/x ; 

we obtain the general solution of the original equation: 

ln(y - B )  = In x +In A, 

ln(y - .E) = In Ax, 
A is constant, 

y -- B = A X  3 y = A X  t B. 

9. The third-order ordinary differential equation 

We now treat the third-order ordinary differential equation, the method being essen- 
tially a natural generalisation of what was done previously. The extension to higher- 
order differential equations is straightforward, and our aim is to show that a non-trivial 
equation can be dealt with by this method, where otherwise we would have to resort to 
numerical solutions. 

The equation is 

d3y/dx3 = f(x, y, dy/dx, dZy/dx2), (5.1) 
and we can write it as a system of three ordinary differential equations of first order with 
three dependent variables (y, U, U )  and one independent variable x: 

du/dx - f ( ~ ,  y, U, U )  = 0, dv/dx - U 0, dy/dx - U = 0. (5.2) 

Considering local differential transformations for this system, 

x + i = x + y, U, U), Y + j = Y + w ( X , Y , u , v ) ,  

v+?J=v+&w(X,y,U,2)),  u + i i = u + & x ( x , y , u , v ) ,  
(5.3) 

we obtain for the first extensions 

d j  (aj/ax) dx + (dg/ay)  dy + (ag/av) dv + ( d j / a u )  du 
dP - (ai/ax) dx + (aP/ay) dy + ( a i / a u )  du + (aP/au) du 
-- 

- dy + E  [(aT/dx) dx +@?/ay) dy + ( a v / d u )  dv + ( Q / a u )  du]  
dx + e [ ( a [ / a x )  dx + (ay/ay)  dy + (a[/.lav) dv + (ay/du)  du]  ’ 

- 

(5.4) 

ay d l  dy ay  dv a y  du -+--+--+-- 
ax ay  dx av dx au dx 

_-  8 7  377 dy dv a77 du 
d.f-[dx ( ax ay dx av dx a u  dx 
d j  * + E  -+--+--+A- 

dY - dY + E  -+-u+-U+--f--u--u 877 877 a77 arl ay 2 
dff dx (ax a y  au a u  ax a y  

and in similar form 

dC dv aw aw aw aw ay a i  ay 
+ &  -+-U + - U  +-f--U ---UU --u2-%fu), (5.5) 

d.f dx (ax a y  au au ax a y  au au 

GIG du ax ax ax ax a y  a y  ay ay 
dZ dx (ax ay  a v  au ax a y  a0 au 

- 

- = - + E  -+-U+-U+-f--f--fu--fu --f2). (5.6) 
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Let us define 

dii du d6 dv 
.--+&W1, df '- dx df dx df dx + EX19 

_.-_ - '- 9:= 1y+ &V1, 

and introducing this in equations (5.2) we have to first order in E 

dii 
d f  
---(a, y ,  c, 27) 

du 
dx 

-__  - f(x, y, v, U ) + &  

d? - dy _ _  v = - - u + & ( ~ 1 - 0 ) ~ = 0 ,  d6 du 
-- 27 =--U + & ( m i  - x )  = 0, df  dx df  dx 

so that if equation (5.2) is satisfied for a solution, then 

af af af af 
x1- I- - 77- - 771 - - w1- = 0. ax ay  av a u  (5.7) 

We would write equation (5 .7)  as a partial differential equation of third order for l: and 
77 only, but the expression would be very long and cumbersome. So we shall first 
consider the point transformation 

Then (5 .7 )  can be written as 

(5 .9 )  
aw af aw af aw af aw af ag af al: af 
ax a u  a y  au  a0 au au au  ax a u  a y  a u  

-- ---v----U--- f-+-u-+-vu-= 0.  

Equation (5.9) can be written in terms of 77 and l: only, if we know that 

and 
aw aw a@ aw a l  al: 
ax a y  au au  ax a y  

X=wl=-+-v+-u+-f--u--vu.  

We obtain 
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Example. Taking the third-order differential equation with maximal symmetry, we 
have 

d3y/dx3 = O+ f = 0, 

and we obtain the following systems for and 77 from equation (5.10): 

a3q/ax3 = 0, 

3 a 2 V / a X a y  -3 a2i/ax2 = 0 ,  

a3v/ay3 - 3 a3y/axay2 = 0, 

3 a3v/ax2ay - a3y/ax3 = 0 ,  a3v/axay2 - a3~/ax2ay = 0 ,  

3 a2v/ay2-9 a2y/axay = 0 ,  3 aylay = 0,  
6 a2y/ay2 = 0,  a3 i / ay3  = 0 ,  

whose general solution is a seven-parameter group: 

f .=A1x2+A2x+A3,  77 = ( ~ A ~ x + B ~ ) Y + C ~ X ’ + C ~ + C ~ .  (5.11) 

So we conclude that any third-order ordinary differential equation can have at most a 
seven-parameter group of point symmetries. 

We now consider local differential symmetries for third-order ordinary differential 
equations; i.e. we include only first derivatives in t and 77 for the sake of simplicity, the 
inclusion of second derivatives being straightforward, but cumbersome. 

5 = f(x, Y, U), 77 = 77b, Y, V I .  

Then (5.7) can be written as 

(5.12) 

Writing (5.12) in terms of 77 and only, if we know that 

uv o = 7 7 1 = - + - v + - u - - u - - v 2 - -  av a77 a77 af a t  ar 
ax a y  a v  ax a y  av 

aw aw aw aw ay ay ay 
x = w 1 = -  +--U +-U +-f ---U --vu ---U , 

ax ay  av au  ax a y  av  

and 

we obtain 
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a i  af +-v-.-3----.v2f 877 af a 2 i  --v2-- a i  af 3--vuf a21 - rl--- Jf 877 - af 
a v  ax a v  ay  a v  a y  a v  a y  a v 2  a y  ax a v  

a 2 i  a2q  af a 2 q  a2v U -+-U af a 2 i  - af + - 7 - 2 -  U-+ 2--- 

a 2 i  2 af a 2 i  2 af +2- uv -+,U u-=0.  
a v  a y  a u  av a u  

(ax a y  dx) au ( ax ay  a y J  au a y  au 

Again, the knowledge of the point transformation of our equation 

d3y/dx3 = 0 

(5.13) 

can be helpful in obtaining a local differential symmetryfor this equation. From (5.11), 
we have the ansatz 

and introducing this in (5.13), we obtain as a general solution for f S O  

5 = A x  +B(v) ,  77 = cy + D~~ + EvX + F~ + V B ( V )  + GV + H, 

where A, C, D, E, F, G and H are constants. 

6. Non-trivial examples 

All the previous examples of differential equations have been very simple, since our aim 
was didactical. Now we want to deal with a non-trivial example to show the strength of 
the similarity analysis method. 

The Thomas-Fermi differential equation (1926-1928) arises from a statistical 
model of a many-electron atom: 
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We begin by looking for the point transformation symmetry of equation (6.1): 

(6.2) - 1 / 2  3 / 2  - 1 / 2  312 y f f = x  y + f ( x , y , v ) = x  Y . 
Introducing equation (6.2) into equation (4 .  l o ) ,  

- 1 / 2  3 / 2  
q x x  fV(2VXY - l x x ) + U 2 ( v , y  -21x,)-t.31YY + x  Y (vy - 2 l x )  

- 3x-1/2y3~21y + t x - 3 / 2 y 3 / 2 ~ _ q X - 1 / 2 y 1 / 2 q  = 0. (6.3) 

Grouping in powers of U, we obtain four differential equations for l and q :  

l Y Y  = 0, (6.4) 
q y y  - 2lXY = 0, (6.5) 

(6.6) 277xy-5xx-3x- Y 4y-0,  

(6.7) T X X  + x y 3i2 (qy-2 lx)+Ix  y l - z x  Y 77 - 0 .  

1 / 2  3 / 2 ,  - 

1 - 3 / 2  312 3 - 1 / 2  1 / 2  

A straightforward calculation gives the general solution of this system: 

(6.8) 
1 

( ( x )  = -Fkx, V ( Y )  = kY. 
So we have the following infinitesimal point transformation symmetry for equation 
(6.1): 

y + j j  = y + s k y  ( k  is an arbitrary real constant). (6.9) x +z  = x --E-x, 

The infinitesimal transformations (6.9) define a one-parameter Lie group, and the finite 
transformations are 

k 
3 

9 j j  = y eku. (6.10) = e - k u / 3  

Writing down the characteristic equations, 

(6 11) I 4  I dx1-b = dy/y = dy /jy , 

the corresponding invariants are 

(6.12) 

Introducing equation (6.12) into equation (6.1), we reduce it to a first-order ordinary 
differential equation for z ( u ) :  

3 u = y x ,  z ( u )  = x 4 y f + y l =  z ( 4 / x 4 .  

(6.13) 

An exceptional solution of equation (6.1) can be found with the help of equation (6.13), 
knowing that its singular point is 

us = 144, zS = -432. 

The singular solution of (6.1) is then 

(6.14) 

y s ( x )  = 144/x3 .  (6.15) 
Now we consider local differential symmetry transformations for equation (6.1) and 
make the ansatz 

t = o ,  V ! X ,  Y ,  21) = L a“(& Y b ” ,  R E N. (6.16) 
R, 

n=O 
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Introducing equation (6.16) into equation (4.9), we obtain after a straightforward but 
long calculation 

l = O ,  77 =$Mxv +My ( M  is an arbitrary real constant). (6.17) 

From (6.17) we can calculate w (see equation (4.6)), and we obtain 

(6.18) 

As we said previously, the knowledge of a particular solution and of the infinitesimal 
transformation allows us to construct a new solution. Equation (2.12) is valid for point 
transformations and not for local differential symmetries, but the generalisation is 
straightforward: 

1/2  3 / 2  w=$My’+iMx y * 

2 = x + E l ( X ,  y ,  U )  + (E2/2!)(llx + 7gY + w l ” )  + . . . , 
Y ’ Y + E 7 7 ( X ,  y ,  U ) + ( E 2 / 2 ! ) ( l 7 7 , + 7 7 r l v + W 7 7 u ) + .  * * 

(6.19) 

Inserting (6.17) and (6.18) into (6.19), we obtain a new solution in terms of a known 
one: 

(6.20) 

where we have absorbed the constant M in the infinitesimal E, 

E := EM. 

It is simple to show that the exceptional solution equation (6.15) is a similarity solution 
and does not produce new solutions; it is enough to introduce (6.15) into (6.20) and we 
obtain jT = y .  

But we hope there are other known solutions which do give us new results. 
(a) Sommerfeld solution. 

C 
valid for x + 00, C an arbitrary constant. 

1 
y ( x ) = T (  144+ X [ l - J 7 3 ) / 2 + . .  .) 

X 

(6.21) 

(b) The theorem of existence and uniqueness valid for ordinary differential equa- 
tions allows us to build a solution which is analytic at a point xo # 0 and converges in the 
neighbourhood of xo: 

Y ( X )  = A  + ( ~ / ~ ! ) X ; ~ ’ * A ~ ’ ~ ( X  - ~ o ) ~ - ( 1 / 3 ! 2 ) ~ i ~ ’ ~ A ~ ’ ~ ( ~  - x O ) ~  

+ ( 1 / 4 ! ) ( 2 ~ i ~ ’ ~ A ~ ’ ~  + $x;’A2)(x - ~ 0 ) ~  

- ( ~ / ~ ! ) ( ~ x ~ ~ ’ ~ A ~ ’ ~ + ~ x ~ ~ A ~ ) ( x  - x o ) ~ + .  . . , 

where y(xo) = A  f 0 and y‘(x0) = 0. 
(c) Fermi solution. 

(6.22) 

valid in the neighbourhood of x = 0. (6.23) 

Introducing solutions ((6.21), (6.22) and (6.23)) into equation (6.20), we obtain new 
solutions of (6.1) for any x. 

4 3 /2  y ( x ) = l + c x + 3 x  + & c x 5 ’ 2 + . . .  
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Another ordinary differential equation of interest in boundary layer problems is the 

d3y/dx3 = y d2y/dx2, (6.24) 

Blasius equation 

where we know two solutions in closed form 

y1(x) = ax + b, 

Under t h e  ansatz 

y2(x) = -3/(x +c) ;  a, b, c are arbitrary constants. (6.25) 

[-0, 77 = 77b, Y, U), (6.26) 

and introducing it into equations (5.13), we obtain as general solution for the 
infinitesimal 7 

(6.27) ~ ( x ,  y, v )  =Ax0 +Bv  +Ay. 

New solutions can be built from equation (6.19) after introducing (6.25): 

y = y + E  ~ ( x + D ) - + ( x + D )  dY 
dx 

(6.28) 

where d := EA and D := BIA. 

7. Conclusion 

There are still some open questions concerning this new method of using local 
differential symmetries of a differential equation to reduce the order of the equation or 
to generate new solutions from known ones. The question of initial, boundary or mixed 
value problems will be treated in a forthcoming publication, as well as how to deal with 
partial differential equations or systems of them. 

The relation between the method of Backlund transformations and ours is only in 
the fact that both involve derivatives. The Bicklund transformations, however, form 
neither a group nor a monoid, and there is no canonical form to obtain them, which 
makes our method superior. 

Under Backlund transformations we understand the symmetries of a differential 
equation that have the form 

U + B = C(x, y, y, U ) ,  (7.1) 

i.e. the transformed unknown function y(x) appears explicitly in the transformation of 
U, whereas in our method it does not appear. Backlund transformations are related to 
the existence of soliton solutions of a differential equation, and we will show in a 
forthcoming publication that our method will produce them also, but in a canonical and 
straightforward manner. 

Finally, we can ask if every ordinary differential equation can be solved by our 
method, thus avoiding the computer completely. The answer is no, and we give the 
following example: 

dyldx = y 2  +x2. (7.2) 

This equation, as the reader can show for himself, does not produce solvable 
differential equations for 5 and 77, and it must be solved by numerical methods. The fact 
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that the differential equations for the infinitesimals and r/ cannot be solved is the 
signal that only numerical methods can be used. On the other hand, it should be pointed 
out that the computer or numerical methods do not solve every differential equation; 
questions of asymptotic behaviour are very difficult or practically impossible to handle 
with the computer, but relatively simple by our method. In no way do we want to 
replace the computer by our method (nor can we), but we would like to emphasise that it 
is worthwhile to try it first, before resorting to the computer. An exact solution, or an 
expansion in terms of a parameter, is better than numerical tables! 
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